Kommentar von Dr. Frank Graeber, MathWorks

6 Auswirkungen von künstlicher Intelligenz auf den Entwicklungsprozess

mathworksnewskw14.jpg
Dr. Frank Graeber fasst die sechs Trends zusammen, die die Entwicklung und Anwendung von KI in Embedded Systemen maßgeblich bestimmen werden. Foto: MathWorks
Anzeige
Trends, wie Lösungen zu Machine Learning, Deep Learning, Datenanalyse und IoT auf Embedded Systemen implementiert werden können, bestehen zwar bereits seit ein paar Jahren, doch noch nie haben sie so vollständig ineinandergegriffen. Angesichts dieser Entwicklung stellt sich die Frage, wie künstliche Intelligenz über alle Branchen und Fachrichtungen hinweg Ingenieuren und Wissenschaftlern zugänglich gemacht werden kann. Zudem muss eine gute Lösung gefunden werden, wie sowohl das Spezialwissen der Ingenieure als auch die mithilfe von KI erstellten Algorithmen in Embedded Systemen integriert werden können.

Um diesen Herausforderungen begegnen zu können, werden Lösungsanbieter an Wegen für mehr Zusammenarbeit und Interoperabilität arbeiten. Dr. Frank Graeber, Manager Application Engineering bei MathWorks, fasst die sechs Trends zusammen, die die Entwicklung und Anwendung von KI in Embedded Systemen maßgeblich bestimmen werden.

1. Größere Spezialisierung bei industriellen Anwendungen

Industrielle Anwendungsmöglichkeiten werden zu einem wichtigen Einsatzfeld für KI, erfordern aber auch eine größere Spezialisierung. Sicherheitskritische Anwendungen verlangen beispielsweise nach einer höheren Verlässlichkeit und Verifizierbarkeit. Fortschrittliche mechatronische Systeme benötigen Designansätze, die mechanische, elektrische und andere Komponenten integrieren. Eine weitere Herausforderung ist, dass diese spezialisierten Anwendungen oft von dezentralen Entwicklungs- und Serviceteams entwickelt und verwaltet werden. Sie sind somit nicht unter der IT zentralisiert.

2. Interoperabilität

Um eine KI-Lösung aufzubauen, müssen verschiedene Systeme, Programme oder Plattformen zusammenarbeiten. Noch gibt es kein allumfassendes Framework, das die besten Lösungen für alle KI-Anwendungsbereiche bietet. Derzeit konzentriert sich jedes Deep Learning Framework auf einige wenige Anwendungen und Produktionsplattformen, während effektive Lösungen Teile aus mehreren verschiedenen Workflows zusammenführen müssen. Eine Lösung schaffen hier Unternehmen wie zum Beispiel ONNX.ai, die eine Umgebung für Entwickler mit einer breiten Palette an Produktionsplattformen bieten.

3. Cloud Computing

Public Clouds werden zunehmend als Host-Plattform für KI genutzt, um die Komplexität zu reduzieren und werden die Abhängigkeit von IT-Abteilungen verringern. Leistungsstarke GPU-Instanzen, flexible Speicheroptionen und produktionsreife Containertechnologien sind nur drei Gründe, warum KI-Anwendungen zunehmend Cloud-basiert sind. Für Ingenieure und Wissenschaftler erleichtert die Cloud-basierte Entwicklung die Zusammenarbeit.

4. Edge Computing

Edge Computing wird KI-Anwendungen in Szenarien ermöglichen, in denen die Verarbeitung lokal erfolgen muss. Edge Computing für leistungsstarke, immer komplexere KI-Lösungen in Echtzeit wird durch die Fortschritte bei Sensoren und energiesparenden Computerarchitekturen möglich gemacht.

5. Komplexität erfordert eine stärkere Zusammenarbeit

Der zunehmende Einsatz von Machine und Deep Learning in komplexen Systemen wird viel mehr Mitarbeiter und eine stärkere Zusammenarbeit erfordern. Datenerhebung, -synthese und -kennzeichnung erhöhen den Umfang und die Komplexität von Deep-Learning-Projekten und erfordern größere, dezentralisierte Teams. Zum einen werden Mitarbeiter mit Spezialkenntnissen gebraucht wie etwa im Bereich Optimierung, Energiemanagement und der Wiederverwendung von Komponenten. Auf der anderen Seite werden Ingenieure benötigt, die das Spezialwissen verschiedener Mitarbeiter oder Teams zusammenführen.

6. KI ist nicht nur für Datenwissenschaftler gedacht

Mit dieser Entwicklung geht auch einher, dass KI von mehr als nur Datenwissenschaftlern genutzt wird. Komplexe Aufgaben wie etwa die Synthese oder das Labeling von Daten wird von neuen Workflow Tools übernommen. So können Ingenieure aus unterschiedlichsten Branchen abseits der Datenwissenschaft KI-Lösungen selbst entwerfen und dabei ihre Domänen-Expertise einbringen.

mathworks.de

Anzeige

Schlagzeilen

Aktuelle Ausgabe

Newsletter

Jetzt unseren Newsletter abonnieren

Webinare & Webcasts

Technisches Wissen aus erster Hand

Whitepaper

Hier finden Sie aktuelle Whitepaper

Videos

Hier finden Sie alle aktuellen Videos

productronica

Anzeige

Industrie.de Infoservice

Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de